Degenerations in GW/DT Theories Dohoon Kim Motivation General Idea Main Result

# Degenerations in Gromov-Witten and Donaldson-Thomas Theories

Dohoon Kim

University of Maryland

AGNES at UPenn, Oct. 2023

### Motivation

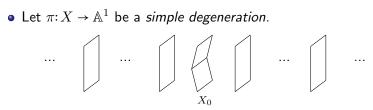
### Degenerations in GW/DT Theories Dohoon Kim

#### Motivation

- General Idea Main Result Related Work
- Let X be a smooth projective scheme.
- Let  $M_X$  be the moduli space of some geometric objects on X with some numerical invariant  $i_X$ .
  - Stable maps and Gromov-Witten invariants.
  - Ideal sheaves and Donaldson-Thomas invariants.

# Motivation (cont.)

#### Degenerations in GW/DT Theories Dohoon Kim


Motivation

General Idea Main Result Related Work

- Let X<sub>0</sub> = Y<sub>1</sub> ∪<sub>D</sub> Y<sub>2</sub> be a projective scheme that is the union of smooth Y<sub>i</sub> intersecting along a common smooth divisor D ≅ D<sub>i</sub> ⊂ Y<sub>i</sub>.
- Goal: construct a moduli space for  $X_0$  and a **relative** moduli space (resp. invariant)  $M_{Y,D}^{\text{rel}}$  (resp.  $i_{Y,D}^{\text{rel}}$ ) such that
  - 1. If X is a smoothing of  $X_0$ , then  $i_X = i_{X_0}$ .
  - 2.  $i_{X_0}$  can be written in terms of  $i_{Y_1,D_1}^{\text{rel}}$  and  $i_{Y_2,D_2}^{\text{rel}}$ , i.e. we have a *degeneration formula*.

### Setup

Degenerations in GW/DT Theories Dohoon Kim Motivation General Idea Main Result Related Works



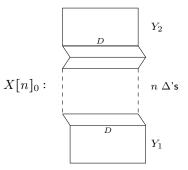
- For  $t \neq 0$ , the moduli spaces for  $X_t$  are well defined.
- The goal is to fill in the central fiber over  $0 \in \mathbb{A}^1$  into

$$\coprod_{t\neq 0} M_{X_t}.$$

## Central Fiber

Degenerations in GW/DT Theories

Motivation


General Idea Main Result

Related Works

• Consider spaces  $X[n]_0$ , where  $X[n]_0$  is created from  $X_0$  as follows:

• Let 
$$\Delta = \mathbb{P}(N_{D/Y} \oplus \mathcal{O}_D)$$
.

• Insert n copies of  $\Delta$  to  $D \subset X_0$ .



# Central Fiber (cont.)

Degenerations in GW/DT Theories Dohoon Kim Motivation General Idea Main Result Related Works

• Set-theoretically, the central fiber  $M_{X_0}$  will be

 $\{\text{stable objects on } X[n]_0 : n \ge 0\} / \sim ,$ 

where stable means that the automorphism group is finite and

- For GW, our objects are pre-stable maps to X[n]<sub>0</sub> such that only the nodes can map to the singular divisors of X[n]<sub>0</sub>.
- For DT, our objects are closed subschemes of *X*[*n*]<sub>0</sub> that are normal to the singular divisors of *X*[*n*]<sub>0</sub>.

# Main Result for GW and DT Theories

Degenerations in GW/DT Theories Dohoon Kim Motivation General Idea Main Result

- By filling in the central fiber, the family ∐<sub>t∈A<sup>1</sup></sub> M<sub>Xt</sub> becomes a proper and separated Deligne-Mumford stack.
- These moduli stacks have virtual fundamental class and thus have enumerative invariants.
- We can also define relative invariants that give rise to a degeneration formula, e.g. for GW invariants, we have for t ≠ 0,

$$\begin{split} \Psi_{g,n,d}^{X_t}(\alpha(t)) &= \\ & \sum_{\gamma} \frac{m(\gamma)}{|\operatorname{Aut}(\gamma)|} \bigg[ \Psi_{\Gamma_1}^{Y_1^{\mathsf{rel}}}(j_1^*\alpha(0), b) \cdot \Psi_{\Gamma_2}^{Y_2^{\mathsf{rel}}}(j_2^*\alpha(0), b^*) \bigg], \end{split}$$

# Related Works

Degenerations in GW/DT Theories Dohoon Kim Motivation

M. S. D. ..............

Related Works

- We can loosen the conditions on our smooth divisor *D*. Indeed, the degeneration formula works when *D* is a normal crossings divisor.
  - Chen and Abramovich (2011) & Gross and Siebert (2011) for GW.
  - Maulik and Ranganathan (2020) for DT.
  - Other moduli spaces, such as the moduli space of (semi)stable sheaves.
    - Gieseker and Li (1994) created a moduli space of Simpson semistable sheaves for degenerate surfaces, but their construction does not allow a degeneration formula.
    - Kuhn (2023) provided a degeneration formula for fibered surfaces.